A density version of Cobham's theorem
نویسندگان
چکیده
Cobham's theorem asserts that if a sequence is automatic with respect to two multiplicatively independent bases, then it is ultimately periodic. We prove a stronger density version of the result: if two sequences which are automatic with respect to two multiplicatively independent bases coincide on a set of density one, then they also coincide on a set of density one with a periodic sequence. We apply the result to a problem of Deshouillers and Ruzsa concerning the least nonzero digit of $n!$ in base $12$.
منابع مشابه
A more reasonable proof of Cobham's theorem
We present a short new proof of Cobham's theorem without using Kronecker's approximation theorem, making it suitable for generalization beyond automatic sequences.
متن کاملCobham's theorem for substitutions
The seminal theorem of Cobham has given rise during the last 40 years to a lot of works around non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences. Let α and β be two multiplicatively independent Perron numbers. Then, a sequence x ∈ A...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملAN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM
n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.07261 شماره
صفحات -
تاریخ انتشار 2017